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Gaussian Random Fields (GRF) (Zhu et al., 2003)

also known as Label Propagation
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Harmonic Property: node = average of neighbors
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Manifold Regularization (Belkin et al., 2006)

Manifold Hypothesis: The data lives in a low dimensional
manifold embedded in high-dimensional ambient space.
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Graph Convolutional Networks (Kipf and Welling 2017)
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