
Variable Selection in Regression using Maximal Correlation and Distance Correlation

Variable Selection in Regression using Maximal
Correlation and Distance Correlation

Deniz Yenigün 1 Maria Rizzo 2

1Istanbul Bilgi University, Department of Industrial Engineering

2Bowling Green State University, Department of Mathematics and Statistics

KaVe 2018, Istanbul Bilgi University



Variable Selection in Regression using Maximal Correlation and Distance Correlation

Table of Contents

Variable Selection
Subset Selection Methods
Shrinkage Methods

Preliminaries
Measures of Dependence
Maximal Correlation
Distance Correlation

Proposed Methods

Simulation Study
Cases
Simulation Results

Application



Variable Selection in Regression using Maximal Correlation and Distance Correlation

Variable Selection

Variable Selection

I Recent improvements in data collection technologies give rise
to complex regression problems where the number of
candidate predictor variables explaining the response variable
may be very large.

I In most of these regression problems the main task is to select
the most influential predictors explaining the response, and
removing the others from the model.

I These problems are usually referred to as variable selection
problems in the statistical literature.
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Subset Selection Methods

Subset Selection

Consider the linear regression model

Y = Xβ + ε, (1)

where Y is a vector of length n representing the response variable,
X is an n by p matrix representing the predictor variables, β is a
vector of length p containing regression coefficients, and ε is a
vector of length n containing independent normal noise terms.

The essential goal in variable selection is to divide X into the set
of active terms XA and the set of inactive terms XI .
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Subset Selection Methods

Issues:
I Comparison Criterion for two candidates of XA.

I Akaike Information Criterion: AIC = n log (RSS/n) + 2p

I Bayesian Information Criterion: BIC = n log (RSS/n) + p log n

I Computationally Intensive Comparison Criteria: k-Fold
Cross-Validation, etc.

I Computational Method. If there are p candidate predictors,
there are 2p − 1 possible candidates for XA. Ex: When p = 20
→ 1,048,575 possible models to check.

I Stepwise Methods (Forward and Backward).

I Branch-and Bounds, Leaps-and-Bounds.

I Stagewise Methods.
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Variable Selection

Shrinkage Methods

Shrinkage Methods

The discrete nature of subset selection methods may lead to high
variance in some situations.

Due to their continuous nature, shrinkage methods may provide an
alternative to the subset selection methods.

I Ridge Regression (Hoerl and Kennard, 1970a,b)

I Lasso (Tibshirani, 1996)

I LARS (Efron et. al., 2004)
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Preliminaries

Measures of Dependence

Dependence Measures

In virtually any field of statistics, there is a need for measuring the
dependence between random variables.

According to Rényi (1959), a measure of dependence should satisfy
the following postulates.



Variable Selection in Regression using Maximal Correlation and Distance Correlation

Preliminaries

Measures of Dependence

Rényi (1959) Postulates for Measures of Dependence

A) δ(X ,Y ) is defined for every pair X ,Y neither of which is
constant with probability 1.
B) δ(X ,Y ) = δ(Y ,X ).
C) 0 ≤ δ(X ,Y ) ≤ 1.
D) δ(X ,Y ) = 0 if and only if X and Y are independent.
E) δ(X ,Y ) = 1 if either X = g(Y ) or Y = f (X ), where g(·) and
f (·) are Borel-measurable functions.
F) If the Borel-measurable functions g(·) and f (·) map the real
axis in a one-to-one way to itself, then δ(f (X ), g(Y )) = δ(X ,Y ).
G) If the joint distribution of X and Y is normal, then
δ(X ,Y ) = |R(X ,Y )|, where R(X ,Y ) is the correlation coefficient
of X and Y .
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Preliminaries

Maximal Correlation

Maximal Correlation

The maximal correlation S between two random variables (X ,Y ) is
defined as

S(X ,Y ) = sup
f ,g

ρ(f (X ), g(Y )),

where ρ denotes the classical correlation coefficient, and the
supremum is taken over all functions of X and Y with finite and
positive non-zero variance.

If there exist some f0 and g0 such that S(X ,Y ) = ρ(f0(X ), g0(Y )),
we say that the maximal correlation of X and Y can be attained.
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Maximal Correlation

Maximal Correlation satisfies all 7 postulates listed by Rényi
(1959).

Product Moment Correlation satisfies B, C, and G only.

Gebelein (1941) Koyak (1987)
Rényi (1959) Sethuraman (1990)
Csáki and Fisher (1963) Dembo et. al. (2001)
Breiman and Friedman (1985) Bryc et. al. (2005)

Yenigun et. al. (2011)
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Preliminaries

Distance Correlation

Distance Correlation

Consider random vectors X in Rp and Y in Rq. The characteristic
functions of X and Y are denoted by fX and fY , respectively, and
the joint characteristic function of X and Y is fX ,Y .
The distance covariance between X and Y is

V 2(X ,Y ) = ‖fX ,Y (t, s)− fX (t)fY (s)‖2. (2)

See Szekely, Rizzo, Bakirov (2007) for the norm ‖ · ‖.
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Preliminaries

Distance Correlation

Similarly, the distance variance of X is

V 2(X ) = ‖fX ,X (t, s)− fX (t)fX (s)‖2, (3)

and the distance correlation between X and Y is

R2(X ,Y ) =

{
V 2(X ,Y )√
V 2(X )V 2(Y )

, V 2(X )V 2(Y ) > 0

0, V 2(X )V 2(Y ) = 0
. (4)
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Preliminaries

Distance Correlation

For all distributions with finite first moments, distance correlation
R generalizes the idea of correlation in two fundamental ways:

1. R(X ,Y ) is defined for X and Y in arbitrary dimensions,

2. R(X ,Y ) = 0 if and only if X and Y are independent.

Distance correlation satisfies the Rényi postulates A, B, C, D. The
rest is partly satisfied. E is satisfied for linear functions, F is
satisfied for orthogonal transformations. As for G, if X and Y are
bivariate normal, R is a function of ρ.
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Proposed Methods

Proposed Methods

We propose two model selection methods based on the dependence
measures distance correlation and maximal correlation.

I Stepwise regression using distance correlation

I Stepwise regression using maximal correlation
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Proposed Methods

Partial Distance (/Maximal) Correlation

We begin with defining partial distance (/maximal) correlation.
Consider random variables X , Y , and a possibly vector valued
random variable Z . Given Z , the partial distance (/maximal)
correlation between X and Y is computed as follows:

I Regress X on Z , denote the error terms by RX .

I Regress Y on Z , denote the error terms by RY .

I The distance (/maximal) correlation between RX and RY is
the partial distance correlation between X and Y , given Z .
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Proposed Methods

Stepwise Regression Using Distance (/Maximal)
Correlation

Then we can define a stepwise regression procedure, using distance
(/maximal) correlation as follows:

1. Consider all candidate predictor variables individually and find
the one which has the largest distance (/maximal) correlation
with the dependent variable.

2. For the remaining steps, add one more term such that the
partial distance (/maximal) correlation with the dependent
variable, given the previously entered variable(s), is largest.

3. Stop when all terms have entered the model. The step with
the smallest cross-validation error is the selected model.
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Proposed Methods

Illustration on Swiss Fertility Data

Standardized fertility measure and socio-economic indicators for
each of 47 French-speaking provinces of Switzerland at about
1888.

I Y - Common standardized fertility measure (Fertility)

I X1 - Percentage of males involved in agriculture as occupation (Agriculture)

I X2 - Percentage of draftees receiving highest mark on army examination
(Examination)

I X3 - Percentage of education beyond primary school for draftees (Education)

I X4 - Percentage of Catholic (Catholic)

I X5 - Live births who live less than 1 year (Infant Mortality)
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Cases

Simulation Study

We consider 6 cases.

I Case 1: Linear Relations

I Case 2: Non-Linear Relations

I Case 3: Dependent but Uncorrelated Variables

I Case 4: Constant Collinearity Among Predictors

I Case 5: Toeplitz Collinearity Among Predictors

I Case 6: A Generalized Linear Model: Gamma Regression

For each case we considered N = 100 samples of size n = 100.
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Simulation Study

Cases

Case 1: Linear Relations

We consider a total of p = 8 candidate predictors having
independent standard normal distributions, q = 3 of which are
related with the dependent variable via:

Y = Xβ + ε,

where β = [1, 1, 1, 0, 0, 0, 0, 0] and ε ∼ N(0, σ = 2).
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Simulation Study

Cases

Case 2: Non-Linear Relations

We consider a total of p = 8 candidate predictors from the
following distributions: X1 ∼ N(0, 1), X2 ∼ N(0, 2),
X3 ∼ U(−1.5, 1.5), X4, ...,X8 ∼ U(−1, 1). The first q = 4 are
related with the dependent variable via:

Y = log[4 + sin(3X1) + sin(X2) + X 2
3 + X4 + 0.1ε],

where ε ∼ N(0, σ = 1).
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Simulation Study

Cases

Case 3: Dependent but Uncorrelated Variables

We consider a total of p = 8 candidate predictors from the
following distributions: X1 ∼ N(0, 1.4), X2 ∼ U(−1.7, 1.7),
X3 ∼ N(0, 0.8), X4, ...,X8 ∼ N(0, 1). Let us define Y1, ...,Y3 as
follows:

Y1 = |X1|, Y2 = X 2
2 , Y3 = X 2

3 .

It can be shown that the pairs (Xi ,Yi ), i = 1, 2, 3, are
uncorrelated. We define the dependent variable as

Y = |X1|+ X 2
2 + X 2

3 .
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Simulation Study

Cases

Case 4: Constant Collinearity Among Predictors

We consider a total of p = 8 candidate predictors from a
multivariate normal distribution, X ∼ NP(0,Σ), where

Σ =


1 θ · · · θ
θ 1 · · · θ
...

...
. . .

...
θ θ · · · 1

 .
We set θ = 0.6. The first q = 3 of these variables are related with
the dependent variable via:

Y = Xβ + ε,

where β = [1, 1, 1, 0, 0, 0, 0, 0] and ε ∼ N(0, σ = 2).
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Simulation Study

Cases

Case 5: Toeplitz Type Collinearity Among Predictors

This is the same as Case 4, but

Σ =


1 θ θ2 · · · θp−1

θ 1 θ · · · θp−2

θ2 θ 1 · · · θp−3

...
...

...
. . .

...
θp−1 θp−2 θp−3 · · · 1

 .
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Simulation Study

Cases

Case 6: A Generalized Linear Model (Gamma Regression)

We consider p = 8 candidate predictors following standard normal
distribution, q = 3 of which are related with the response via:

L = Xβ,

with β = [0.25, 0.25, 0.25, 0, 0, 0, 0, 0]. The link function is the log
function, thus the mean vector of the responses are µ̂ = eL.
Responses are generated from gamma distribution with mean µ̂
and unit variance
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Simulation Results

Case 1: Linear Relations

Case 1, Most Frequent Models

Proportions

M
od
el
s

Hit Rate

X1,X2,X3

X1,X2,X3,X4

X1,X2,X3,X6

X1,X2,X3,X7

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC

Case 1, Individual Variable Proportions

Proportions

V
ar
ia
bl
es

X1

X2

X3

X4

X5

X6

X7

X8

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC



Variable Selection in Regression using Maximal Correlation and Distance Correlation

Simulation Study

Simulation Results

Case 2: Non-Linear Relations

Case 2, Most Frequent Models

Proportions

M
od
el
s

Hit Rate

X1,X2,X3,X4

X1,X2,X4

X2,X3,X4

X2,X4

X2,X4,X6

X4

0.2 0.6

AIC

0.2 0.6

DC

0.2 0.6

Lasso

0.2 0.6

MC

Case 2, Individual Variable Proportions

Proportions

V
ar
ia
bl
es

X1

X2

X3

X4

X5

X6

X7

X8

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC
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Simulation Results

Case 3: Dependent but Uncorrelated Variables

Case 3, Most Frequent Models

Proportions

M
od
el
s

Hit Rate

X1

X2

X3

X8

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC

Case 3, Individual Variable Proportions

Proportions

V
ar
ia
bl
es

X1

X2

X3

X4

X5

X6

X7

X8

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC
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Simulation Results

Case 4: Constant Collinearity Among Predictors

Case 4, Most Frequent Models

Proportions

M
od
el
s

Hit Rate

X1, X2, X3

X1, X2, X3, X4

X1, X2, X3, X5

X1, X2, X3, X6

X1, X2, X3, X7

X2, X3

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC

Case 4, Individual Variable Proportions

Proportions

V
ar
ia
bl
es

X1

X2

X3

X4

X5

X6

X7

X8

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC
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Simulation Results

Case 5: Toeplitz Type Collinearity Among Predictors

Case 5, Most Frequent Models

Proportions

M
od
el
s

Hit Rate

X1, X2, X3

X1, X2, X3, X5

X1, X2, X3, X6

X1, X2, X3, X7

X1, X2, X3, X8

0.2 0.6

AIC

0.2 0.6

DC

0.2 0.6

Lasso

0.2 0.6

MC

Case 5, Individual Variable Proportions

Proportions

V
ar
ia
bl
es

X1

X2

X3

X4

X5

X6

X7

X8

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC
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Simulation Results

Case 6: A Generalized Linear Model (Gamma Regression)

Case 6, Most Frequent Models

Proportions

M
od
el
s

Hit Rate

X1, X2, X3

X1, X2, X3, X4

X1, X2, X3, X46

X1, X2, X3, X5

X1, X2, X3, X7

0.2 0.6

AIC

0.2 0.6

DC

0.2 0.6

Lasso

0.2 0.6

MC

Case 6, Individual Variable Proportions

Proportions

V
ar
ia
bl
es

X1

X2

X3

X4

X5

X6

X7

X8

0.2 0.6 1.0

AIC

0.2 0.6 1.0

DC

0.2 0.6 1.0

Lasso

0.2 0.6 1.0

MC
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Application

Application: S&P 500 Monthly Returns Data

S&P 500 is an index portfolio defined by Standard & Poor’s rating
agency.

Monthly returns of S&P 500 index and the values of 11 candidate
predictors between January 1989 and December 2007 (n=216)
were analyzed using the four methods discussed above.

I Stepwise AIC

I Stepwise DC

I Stepwise MC

I Lasso
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I Y - Monthly expected return of S&P 500 index (ex.r)

I X1 - Dividend yield (div yd)

I X2 - Earnings yield (ern yd)

I X3 - Volatility index (vix)

I X4 - Unexpected volatility (unvix)

I X5 - Inflation rate (inf)

I X6 - Change in inflation rate (inf chg)

I X7 - 90-day treasury bill (Tbill)

I X8 - Industrial production index growth (ipi gr)

I X9 - Credit spread (cred sp)

I X10 - Term spread (term sp)

I X11 - Yield spread (yd sp)
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Conclusions

I Maximal Correlation and Distance Correlation were employed
as comparison criteria in stepwise regression

I The methods are easy to implement

I The performances of the methods are comparable with
commonly used methods

I In the presence of nonlinear or uncorrelated dependencies, our
methods may be favorable
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