

Influence Maximization on Social Networks The Seed Selection Problem

Gönenç Yücel Boğaziçi University, Industrial Engineering Department

25 May 2018

Social diffusion processes

- Processes related to the spread of a thing within a social group
 - Spread of (fake) news/rumors
 - Influenza pandemics
 - Innovation diffusion
 - Diffusion of political views
 - Diffusion of behaviors
- In general terms, driven by three factors
 - Embodied properties of the diffusant
 - Individual state
 - condition, preferences, resources
 - Social influence
 - Information, influence

Influence diffusion and maximization

- Diffusion processes where the dominant factor is the social influence
 - Embodied properties are not important
 - Individual behavior is primarily conditioned by what others do

- Influence maximization
 - Given a social group, maximizing the final diffusion level (i.e. total influence) by selecting the initial set of individuals to adopt the diffusant (i.e. seed set)
 - A.k.a. The seed selection problem, target set selection problem

• Social models of the adoption process at the individual level

• Linear Threshold (LT) Model

• Independent Cascade (IC) Model

Structures of social networks

- Key structural features of a network;
 - # of nodes and edges
 - Diameter
 - Avg. shortest path length (ASPL)
 - Clustering coefficient (CC)
 - Degree distribution (DD)
- Three major classes of networks
 - Random networks
 - Scale-free networks (Power law in DD)
 - Small-world networks (High CC, Low ASPL)

		Solution Approach		
		Optimization by MP	Rule-based Heuristics	
Network Information	Perfect and Complete	A	В	
	Imperfect and/or Incomplete	С	D	

- Synthetically generate a large set of social networks of a certain class
 - Possess full and perfect information to simulate a diffusion
- Pretend that we do not know anything about the network and select seeds with candidate rules
- Evaluate the rules based on the resulting diffusion levels

Experimental setup

- Linear Threshold Model
- Seed set budget: 5% of the network size
- 3 network classes
 - 20 heuristics to compare
 - 300 instances for each network
- Two groups of selection approaches (heuristics)
 - Group 1: Requires complete network information
 - Group 2: Rely on local information about randomly picked sections
- Initial analysis on 1000-node networks
 - Scale-up to 50000-node ones

Sample selection-rule couple

- Average Threshold (AT):
 - Choose s nodes in the network with minimum average threshold metric to activate.
 - The average threshold for node x is calculated as the mean of the neighbor thresholds of node x.
- Average Threshold within 1 Step (ATw1S):
 - This heuristic first accesses to an inactive node.
 - Then, it selects the inactive neighbor of this node with the minimum average threshold value as a seed.
 - This procedure is repeated s times. In real life, this corresponds to asking someone how convincing are their friends.

- No silver bullet.
 - Importance of apriori knowledge on the network class and the right diffusion model
- Value of full and perfect information
 - Full and perfect information may even be misleading in some cases
- Just knowing what kind of network we are dealing with vs knowing everything about that network
- Evolution of the network

Thank you...

Random Networks

Scale-free Networks

Small-World Networks

Runtimes

Group 1 Heuristics	Runtime (s)	Group 2 Heuristics	Runtime (s)	Random Heuristic	Runtime (s)
D	0.0005	Dw1S	0.0064	R	0.0002
S	0.0052	Sw1S	0.0102		
TS	0.3330	TSw1S	0.3363		
AT	0.0048	ATw1S	0.0105		
ATwSD	0.0053	ATwSDw1S	0.0108		
ATw5Gr	0.0049	ATw5Grw1S	0.0110		
ATw5GrwSD	0.0054	ATw5GrwSDw1S	0.0110		
DD	0.1009				
В	8.4030				
С	17.0212				
\mathbf{E}	0.7542				
\mathbf{PR}	0.9126				

-

