Is it possible to extract causal relationships from data analysis?

Yaman Barlas Nefel Tellioğlu

Karmaşık Sistemler ve Veri Bilimi Çalıştayı Bilgi Üniversitesi 26 Mayıs 2018

Outline

- 1. Problem Introduction
- 2. Research Questions
- 3. Methodology
- 4. Discovering Signs of Causal Relations
- 5. Discovering State Variables in Differential Equations
- 6. Discovering Causal Equations
- 7. Ongoing Research
- 8. Conclusion

1. Problem Introduction System Dynamics

-A methodology to frame, analyze and seek solutions for complex dynamic policy problems. -A technique to construct 'theory-like' descriptive/causal dynamic models

2 main tools:

1. Problem Introduction

2. Research Questions

Discovering the	Discovering State	Discovering Mathematical
Directions of Relations	Variables	Expression of Relations
X Y	Y dY/dt X	$dY/dt = f_1(X)$ $X= f_2(Y)$

-Can we discover the signs (polarity) of causal relations?-Can we discover which variables are the state (stock) variables?-Can we discover the causal equations?

What are the limits of data analysis?

Non-experimental Real-life like data

Curve Fitting is applied

- Correlation Analysis: Spearman correlation
- non-parametric; no assumption for underlying distributions
- the monotonic relationship between variables
- Spearman coefficient (ρ), which is between [-1, 1]:

$$\rho = 1 - \frac{6\Sigma d_i^2}{n(n^2 - 1)} \qquad \qquad \rho_{12.3} = \frac{\rho_{12} - \rho_{13}\rho_{23}}{\sqrt{(1 - \rho_{13}^2)(1 - \rho_{23}^2)}}$$

4. Discovering the Signs of Relations

• Correlation Analysis

4. Discovering the Signs of Relations

• Correlation Analysis: An Example

dPopulation/dt = - Death Death = 0.2 * Population

4. Discovering the Signs of Relations

• Correlation Analysis: An Example

5. Discovering State (Stock) Variables

• Curve Fitting is applied

• Example *dPopulation/dt =f(Death) ?*

• Example *dPopulation/dt =f(Death) ?*

• Example *dPopulation/dt =f(Death) ?*

Curve Fitting from Death to Population	Curve Fitting from Population to Death		
(1) Population= f(Death)	(3) Death= f(Population)		
(2) $dPopulation/dt = f(Death)$	(4) $dDeath/dt = f(Population)$		

Curve Fitting Results from Death(x) to Population(y)

	Rmse	Маре	Method	Function Relation		
1	0.0339	0.0001	LinFunc		dy~ a+ b*x	XtoDY
Z 3	2318.4037	3.2818	ExpFunc		y~ a+b*x log-dy~ a+b*x	XtoDY
4 5	8422.5490 15571.5583	$13.0940 \\ 4.6847$	ExpFunc SShaped	y~ SSlogis(x,	logy~a+b*x Asym, xmid, scal)	XtoY XtoY

Curve Fitting Results from Population(x) to Death(y)

	Rmse	Маре	Method	Function Relation	
12	0.00188 0.00193	0.00010 0.00014	LinFunc	dy~ a+ b*x v~ a+b*x	XtoDY XtoY
3 4 5	46.36758 168.45130 311.43145	3.28176 13.09397 4.68475	ExpFunc ExpFunc SShaped	log-dy~ a+b*x logy~a+b*x v~ SSlogis(x, Asym, xmid, scal)	XtoDY XtoY XtoY

Population= 50*Death dPopulation/dt = -1*Death

Death= 0.02*Population dDeath/dt= -0.0004*Population

-Single Cause Variable

-Multiple Cause Variables

-Single Cause Variable

Curve Fitting with possible linear and nonlinear relationships

-Single Cause Variable: Example

Temperature Change= f(Discrepancy) Discrepancy= g(RoomTemperature)

-Single Cause Variable: Example

Temperature Change= 0.2*Discrepancy

Discrepancy = 25 - Room Temperature

Curve fitting can correctly estimate the underlying equation with a single input variable

7. Ongoing Research

-Mondet Gales GealVascia Maleiables

-Multiple Cause Variables

7. Ongoing Research

-Multiple Cause Variables

 $Y = Y^* + f_1(X_1) + f_2(X_2)$

For additive formulation, if X functions are linear and there is no multicollinearity between X_1 and X_2 , then linear regression can be used. $Y = Y^* * f_1(X_1) * f_2(X_2)$

For multiplicative formulation, regression cannot seperate the f() functions even if they are linear.

8. Conclusion

To discover the signs of causal relations:

• Correlation analysis can be applied. However, we must know which variables are the state & rate variables.

8. Conclusion

To discover the state variables:

• Data analysis cannot return correct/reliable results. Real-life experience, reasoning, and scientific literature must be used.

8. Conclusion

To discover the causal equations:

- In the case of one cause variable: Curve fitting approach gives consistent results with the underlying structure.
- In the case of multiple cause variables:
 - \circ For additive formulation, if the functions f(x) are linear and there is no multicollinearity, linear regression can be used.
 - \circ For multiplicative formulation, regression cannot be used to estimate the effects of X variables.