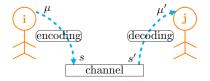
On Protolanguage Language An Evolutionary Approach

Haluk O. Bingol

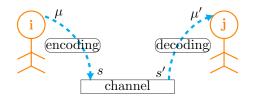

Complex Systems Research Lab (SoSLab) Dept. of Computer Engineering Bogazici University, Istanbul

II. Karmaşık Sistemler ve Veri Bilimi Çalıştayı Bogazici University, 2019-05-04

イロト イヨト イヨト イヨト

Content

Protolanguage Definition Naming Model **Evolutionary Dynamics** Evolution Fitness Learning Teacher Findings Global Language Local Languages References



* 臣

< ∃⇒

Definition Naming Model

Protolanguage

[Hurford, 1989, Nowak and Krakauer, 1999, Nowak et al., 1999]

イロト イヨト イヨト イヨト

Definition Naming Model

Protolanguage

Goal: Agent i wants to transfer a meaning to agent j

臣

・ロト ・日ト ・ヨト ・ヨト

Definition Naming Model

Protolanguage

Goal: Agent i wants to transfer a meaning to agent j

• *i* thinks of a meaning μ

臣

イロト イヨト イヨト イヨト

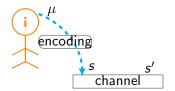
Definition Naming Model

Protolanguage

Goal: Agent i wants to transfer a meaning to agent j

- *i* thinks of a meaning μ
- *i* encodes μ to symbol *s*

臣


イロト イヨト イヨト イヨト

Definition Naming Model

Protolanguage

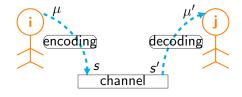
Goal: Agent *i* wants to transfer a meaning to agent *j*

- \blacktriangleright *i* thinks of a meaning μ
- \blacktriangleright *i* encodes μ to symbol *s*
- channel carries over; due to noise s becomes s'

• 3 >

→

Definition Naming Model


Protolanguage

Goal: Agent *i* wants to transfer a meaning to agent *j*

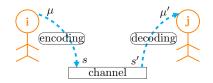
- \blacktriangleright *i* thinks of a meaning μ
- \blacktriangleright *i* encodes μ to symbol *s*
- channel carries over; due to noise s becomes s'
- \blacktriangleright *i* decodes *s'* as meaning μ'

Just communication. No grammer!

[Hurford, 1989, Nowak and Krakauer, 1999, Nowak et al., 1999]

A B K A B K

Definition Naming Model

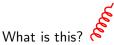

Definitions

Sets

- set of agents $\mathcal{P} \triangleq \{1, \cdots, i, j, \cdots, M\}$
- ► set of meanings of *i* $\mathcal{M}^{(i)} \triangleq \{1, \cdots, \mu, \cdots, M\}$
- ► set of symbols $S^{(i)} \triangleq \{1, \cdots, s, \cdots, S\}$

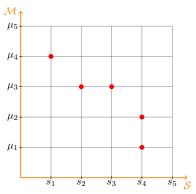
Questions

- $\blacktriangleright \mathcal{M}^{(i)} \stackrel{?}{=} \mathcal{M}^{(j)}$
- $\triangleright \ \mathcal{S}^{(i)} \stackrel{?}{=} \mathcal{S}^{(j)}$
- encoding?
- decoding?



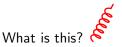
イロン イヨン イヨン

Bingol


Definition Naming Model

Naming

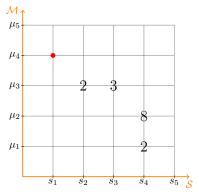
- Learning
 - obtaining meaning-symbol associations


Meaning-symbol association

Bingol

Definition Naming Model

Naming


- encoding
 - $\mathsf{Prob}\{\mu_6 \rightarrow s_1\} = 1$ $\mathsf{Prob}\{\mu_5 \rightarrow s_2\} = 2/5$
- decoding

 $\mathsf{Prob}\{s_1
ightarrow \mu_6\} = 1$ $\mathsf{Prob}\{s_7
ightarrow \mu_2\} = 8/10$

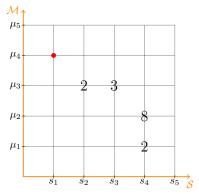
Questions

- ▶ Symbol for µ₅?
- Meaning for s₅?

Meaning-symbol association

[Steels, 1995, Hurford, 1989, Nowak and Krakauer, 1999, ← □ ▷ ← ← ▷ Nowak et al., 1999] → へ On Protolanguage Language © KSVB2019 7/23

Model


A = [a_{µs}]: association matrix
 a_{µs} ≜ frequency of µ → s
 E = [e_{µs}]: encryption matrix

$$\frac{e_{\mu s}}{\triangleq} \frac{\mathsf{Prob}\{\mu \to s\}}{\sum_{s'=1}^{S} a_{\mu s'}}$$

D = $[d_{\mu s}]$: decryption matrix

$$\frac{d_{\mu s}}{\triangleq} \frac{\mathsf{Prob}\{s \to \mu\}}{\sum_{\mu'=1}^{M} a_{\mu' s}}$$

Meaning-symbol association

[Steels, 1995, Hurford, 1989, Nowak and Krakauer, 1999, < □ → < ♂ → < Nowak et ala 1999]

Definition Naming Model

Model

2-person language

- 2 different association matrices
- ► successfully communicating μ Prob $\{\mu \rightarrow \mu\} \triangleq \sum_{s=1}^{S} e_{\mu s}^{(i)} d_{s\mu}^{(j)}$
- ► (average) comprehension from *i* to *j* $F(i \rightarrow j) \triangleq \frac{1}{M} \sum_{\mu=1}^{M} \sum_{s=1}^{S} e_{\mu s}^{(i)} d_{s\mu}^{(j)}$
- ► (average) mutual comprehension from i to j F(i ↔ j) $\triangleq \frac{1}{2}(F(i → j) + F(j → i))$

	\bigcirc	\bigcirc
agent	i	j
language	$L^{(i)}$	L ^(j)
association	$\mathbf{A}^{(i)}$	$\mathbf{A}^{(j)}$
encoding	$\mathbf{E}^{(i)}$	$\mathbf{E}^{(j)}$
decoding	$\mathbf{D}^{(i)}$	$\mathbf{D}^{(j)}$

イロン イヨン イヨン

3

Definition Naming Model

Model

2-person language

- 2 different association matrices
- ► successfully communicating μ Prob $\{\mu \rightarrow \mu\} \triangleq \sum_{s=1}^{S} e_{\mu s}^{(i)} d_{s\mu}^{(j)}$
- (average) comprehension from *i* to *j* $F(i \rightarrow j) \triangleq \frac{1}{M} \sum_{\mu=1}^{M} \sum_{s=1}^{S} e_{\mu s}^{(i)} d_{s\mu}^{(j)}$
- (average) mutual comprehension from *i* to *j* $F(i \leftrightarrow j) \triangleq \frac{1}{2}(F(i \rightarrow j) + F(j \rightarrow i))$

・ロト ・回ト ・ヨト ・ヨト

Definition Naming Model

Model

2-person language

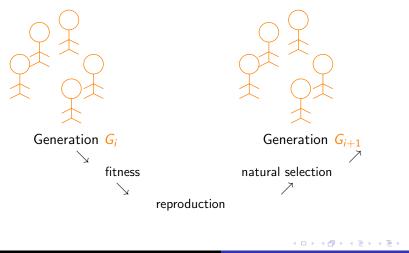
- 2 different association matrices
- successfully communicating μ Prob $\{\mu \rightarrow \mu\} \triangleq \sum_{s=1}^{S} e_{\mu s}^{(i)} d_{s\mu}^{(j)}$
- (average) comprehension from *i* to *j* $F(i \rightarrow j) \triangleq \frac{1}{M} \sum_{\mu=1}^{M} \sum_{s=1}^{S} e_{\mu s}^{(i)} d_{s\mu}^{(j)}$
- (average) mutual comprehension from *i* to *j* $F(i \leftrightarrow j) \triangleq \frac{1}{2}(F(i \rightarrow j) + F(j \rightarrow i))$

N-person language

- N different association matrices
- $\binom{N}{2}$ mutual comprehensions
- ▶ within community comprehension for $C \subseteq P$ $W(C) \triangleq$ $\frac{1}{2\binom{|C|}{2}} \sum_{i \in C} \sum_{j \in C} F(i \leftrightarrow j)$

・ロト ・回ト ・ヨト ・ヨト … ヨ

[Hurford, 1989, Nowak and Krakauer, 1999, Nowak et al., 1999]


Protolanguage Evolutionary Dynamics Evolution Learning Fitness Findings

Evolutionary Dynamics

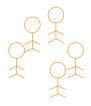
イロト イヨト イヨト イヨト

Evolution Fitness

Evolutionary Dynamics

Evolution Fitness

Fitness


Assumption

Language ability increases fitness

"able to speak" should increase fitness:

fitness \nearrow as

- ► language 🗡
- mutual comprehensions $F(i \leftrightarrow j) \nearrow$
- ▶ within community comprehension W(C) >

臣

イロト イヨト イヨト イヨト

Teacher

Learning

"Parent Oriented Teacher Selection Causes Language Diversity" Journal of Theoretical Biology, 429, 2017

[Cimentepe and Bingol, 2017]

イロト イヨト イヨト イヨト

æ

Teacher Selection

Assumptions

- Child learns language of parent p or someone "close" to parents
- Child learns from single teacher t

Language-wise close (Model-A)

 Select R agents language-wise closest to parent p Physically close (Model-B)

- Select R agents physically closest to parent p
- Use 1D ring lattice for physical distance

► This *R*-set is called the imitation set L_p of p. Select l as t among R with probability

$$\frac{F(p \leftrightarrow \ell)}{\sum_{j \in \mathcal{L}_p} F(p \leftrightarrow \ell)}$$

イロト イヨト イヨト イヨト

æ

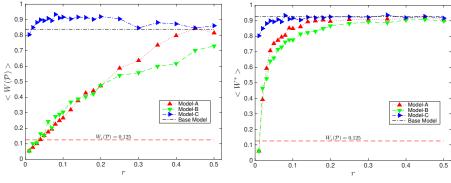
Child Learns from Teacher

- Initially child has an empty association matrix A
- Child learns by means of sampling
 - Child asks Q questions for each meaning μ
 - Teacher answers symbols s
 - Child populates her association matrix entry a_{µs}

イロト イヨト イヨト イヨト

Global Language Local Languages References

Findings


Teacher selection causes language diversification

[Cimentepe and Bingol, 2017]

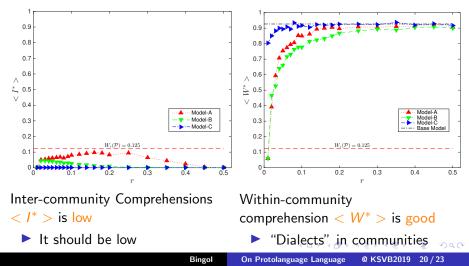
・ロト ・日ト ・ヨト ・ヨト

Global Language Local Languages References

No Global Language

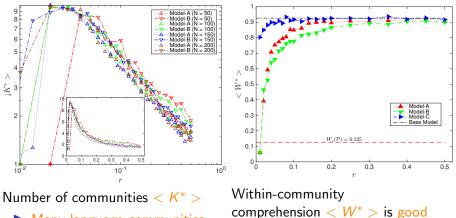
Overall comprehension $W(\mathcal{P})$ is not good

No single language


Within-community comprehension $\langle W^* \rangle$ is good

"Dialects" in communities

Global Language Local Languages References


Inter-community Comprehension

High within-community, low inter-community comprehension

Global Language Local Languages References

Many Local Languages

Many language communities

"Dialects" in communities

イロト イヨト イヨト イヨト

Global Language Local Languages References

Finding Optimum Language Clusters

(Details)

- *K*-partition of \mathcal{P} $\mathbb{P}_{K} = \{\mathcal{C}_{1}, \mathcal{C}_{2}, \cdots, \mathcal{C}_{K}\}$
- Average within-community comprehension $W(\mathbb{P}_{\mathcal{K}}) = \frac{1}{\mathcal{K}} \sum_{\alpha=1}^{\mathcal{K}} W \mathcal{C}_{\alpha}$

Using k-means clustering

 Partition with the maximum average within-community comprehension

$$\frac{\mathbb{P}_{\kappa}}{\kappa} = \arg\max_{K} W(\mathbb{P}_{\kappa}).$$

- Optimum K $K^* = \arg \max_{K} W(\mathbb{P}_{K})$
- Optimum within-community comprehension W* = W(PK)

・ロン ・四 と ・ ヨ と ・ 日 と

æ

Global Language Local Languages References

References I

[Cimentepe and Bingol, 2017] Cimentepe, I. and Bingol, H. O. (2017). Parent oriented teacher selection causes language diversity. Journal of theoretical biology, 429:142–148.
[Hurford, 1989] Hurford, J. R. (1989). Biological evolution of the saussurean sign as a component of the language acquisition device. Lingua, 77(2):187–222.
[Nowak and Krakauer, 1999] Nowak, M. A. and Krakauer, D. C. (1999). The evolution of language. Proceedings of the National Academy of Sciences, 96(14):8028–8033.
[Nowak et al., 1999] Nowak, M. A., Plotkin, J. B., and Krakauer, D. C. (1999). The evolutionary language game. Journal of Theoretical Biology, 200(2):147–162.

[Steels, 1995] Steels, L. (1995). A self-organizing spatial vocabulary. *Artificial Life*, 2(3):319–332.

source: https://github.com/halukbingol/presentationLanguage.git

