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Cluster Validity

* For cluster analysis, the question Is how to evaluate the
“goodness” of the resulting clusters?

* But “clusters are in the eye of the beholder”!

* Then why do we want to evaluate them?
 To avoid finding patterns in noise

« To compare clustering algorithms

* To compare two sets of clusters

« To compare two clusters
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Clusters found in Random Data
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Different Aspects of Cluster Validation

1. Determining the clustering tendency of a set of data, I.e., distinguishing
whether non-random structure actually exists in the data.

2. Comparing the results of a cluster analysis to externally known results,
e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data without
reference to external information.
- Use only the data

4. Comparing the results of two different sets of cluster analyses to
determine which is better.

5. Determining the ‘correct’ number of clusters.
For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or just
individual clusters.



Framework for Cluster Validity

* Need a framework to interpret any measure.
« For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?

« Statistics provide a framework for cluster validity
 The more “atypical” a clustering result 1s, the more likely it represents valid structure
In the data

«  Can compare the values of an index that result from random data or clusterings to
those of a clustering result.
If the value of the index is unlikely, then the cluster results are valid

« These approaches are more complicated and harder to understand.

* For comparing the results of two different sets of cluster analyses, a
framework is less necessary.

« However, there is the question of whether the difference between two index values is
significant



Measures of Cluster Validity

« Numerical measures that are applied to judge various aspects of cluster
validity, are classified into the following three types.

 External Index: Used to measure the extent to which cluster labels match externally
supplied class labels.
* Purity
* Internal Index: Used to measure the goodness of a clustering structure without
respect to external information.
« Sum of Squared Error (SSE)

* Relative Index: Used to compare two different clusterings or clusters.
« Often an external or internal index is used for this function, e.g., SSE or entropy

 Sometimes these are referred to as criteria instead of indices

« However, sometimes criterion is the general strategy and index is the numerical measure that
Implements the criterion.



Measures of Cluster Validity

« External cluster validation, which consists in comparing the results of a cluster
analysis to an externally known result, such as externally provided class labels. It
measures the extent to which cluster labels match externally supplied class labels.
Since we know the “true” cluster number 1n advance, this approach 1s mainly used
for selecting the right clustering algorithm for a specific data set.

* Internal cluster validation, which uses the internal information of the clustering
process to evaluate the goodness of a clustering structure without reference to
external information. It can be also used for estimating the number of clusters and
the appropriate clustering algorithm without any external data.

* Relative cluster validation, which evaluates the clustering structure by varying
different parameter values for the same algorithm (e.g.,: varying the number of
clusters k). It’s generally used for determining the optimal number of clusters.



External Validation

Algorithm 21.4: Algorithm for matching partitions and clusters

MatchPartitionCluster (P,C,match):

1 foreach p € P do

2 match(p) + ()

3 foreach c € C do

4 t overlap(p, c) + %

5 while overlap # () do

6 (Pmax, Cmax) — GetMaxQOverlap(overlap)

7 mat ch(Pmax) < Cmax

8 overlap + overlap — {overlap(pmax, *), overlap(*, Cmax)}

7122/2019



Purity Measure
* |t Is the percent of the total number of objects(data points) that were
classified correctly, in the unit range [0..1]

k
1
Purity = ~ Zmuxﬂci M ]
i=1

To calculate Purity first create your confusion matrix This can be done by looping through each
cluster ¢; and counting how many objects were classified as each class ;.

1| T2 | T3
c1|] e | 53 | 1e
2] e | 1 | 6@
c3|] @ | 16 | o
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Purity Measure

* |t Is the percent of the total number of objects(data points) that were
classified correctly, in the unit range [0..1]

k
1
Purity = ~ Zmumﬂci M ]
i—1

To calculate Purity first create your confusion matrix This can be done by looping through each
cluster ¢; and counting how many objects were classified as each class ;.

| T2 ] T2 | T3
c1|] e | 53 | 1e
cz|] e | 1 | 6@
3] e | 16 | o

Then for each cluster ¢; | select the maximum value from its row, sum them together and finally divide
by the total number of data points.

Purity = (53 + 686 + 16) / 148 = 8.92142
7122/2019
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Precision & Recall & F-measures

* True Positive (TP) Assignment: when similar members are assigned to
the same cluster. This 1s a correct decision.

* True Negative (TN) Assignment: when dissimilar members are
assigned to different clusters. This Is a correct decision.

» False Negative (FN) Assignment: when similar members are assigned
to different clusters. This IS an incorrect decision.

* False Positive (FP) Assignment: when dissimilar members are
assigned to the same cluster. This Is an incorrect decision.

° <1 ’ — P = P
Precision and Recall: p- —— r=-———

e F-measure: ] _ o . Precision - recall

precision + recall

7122/2019 12



Precision & Recall & F-measures

Calculate TP, FP, TN, FN,
Precision, Recall and
F-measure

Community | Community 2 Community 3

7/22/2019 Reference Social Data Mining. by Reza Zafarani Mohammad Ali Abbasi Huan Liu
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Precision & Recall & F-measures

Community |

Community 2

Community 3

For FF, we need to compute dissimilar pairs that are in the same community.
For instance, for community 1, thisis (5 1+ 5x1+1x 1). Therefore,

FP=5xT1+5x1+1x1)+ (6x1) + (4x2) =25 (6.37)

I P,

Commnunity 1 Community 2 Community 3

FN computes similar members that are in different communities. For instance,

for label +, thisis (6 x 1+ 6 x 2+ 2 x 1). Similarly,

FN=5x1)+(6x1+6x2+2x1)+(4x1)=29 (6.38)

e i

o + A

Fmally, TN computes the number of dissimilar pairs in dissimilar communi-
ties:

w4+ +. X A+ .- 4

RS JENEEL e et RN,

TN = (5xb6+1x1+1x6+1x1)

Communities 1 and 2

A o+ +4 A+

S e S i, s

+ (Gxd+5x2+1xd+1x2)

Communities 1 and 3

+4 ,+ A
+(6x4+1x2+1x4 =104 (6.39)

Communities 2 and 3

Hence,
P = 2 0.56 {6.400)
32 + 25
- - - - - - - — 32 —

7/22/2019 Reference Social Data Mining. by Reza Zafarani Mohammad Ali Abbasi Huan Liu R= 509 =052 (6.41)
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Entropy

» Data clustering involves solving two main problems.
1. Defining exactly what makes a good clustering of data.

2. Determining an effective technique to search through all possible
combinations of clustering to find the best clustering.

 Entropy addresses the first problem.

* |t Is the measure of the amount of disorder in a vector. There are
several variations of entropy. The most common is called Shannon's
entropy. Expressed mathematically, Shannon's entropy Is:

n-1
H(X)-- z P(x)*log:(P(x.))
i=0

https://visualstudiomagazine.com/articles/2013/02/01/data-clustering-using-entropy-minimization.aspx



https://visualstudiomagazine.com/articles/2013/02/01/data-clustering-using-entropy-minimization.aspx

n-1
B z P(x)*log:(P(x.))

Entropy

 Suppose you have a vector = { red, red, blue, green, green, green }.

* X0 =red, x1 = blue and x2 = green.
. g'réeoprobability of red is P(x0) =2/6 =0.33. P(x1) = 1/6 = 0.17 and P(x2) = 3/6 =

H(x) = - [ ©.33 * 10g2(@.33) + ©.17 * log (8.17) + 0.50 * log(@.50) ]

- [ (8.33 * -1.58) + (0.17 * -2.58) + (0.5 * -1.90) ]
- [ -8.53 + -08.43 + -9.50 ]
1.46

* The smallest possible value for entrop% Is 0.0, which occurs when all
symbols In a vector are the same. In other words, there's no disorder in the
vector. The larger the value of entropy, the more disorder there is in the
assoclated vector.

« Smaller values of entropy indicate less disorder in a clustering, which
means a better clustering.

7/22/2019 https://visualstudiomagazine.com/articles/2013/02/01/data-clustering-using-entropy-minimization.aspx
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Entropy ~ EMIAC Algorithm

e Here there are three clusters, k =0, k=1 and k = 2.

* Let us define the overall entropy of a clustering as the weighted
sum of entropies for each cluster, where the entropy of a cluster
IS the sum of the entropies of each column.

* For k =0, the three column entropies are:

Color: H= - 1/3 * log2(1/3) + 2/3 * log2(2/3) ]
= 8.92
Size: H=-[ 2/3 * log2(2/3) + 1/3 * log2(1/3) ]

B.92

Texture: H - [ 3/3 * 1log2(3/3) ]

2.8

 The entropy for cluster k =015 0.92 + 0.92 + 0.00 = 1.84.
* The entropy for cluster k = 115 1.59 + 0.00 + 0.00 = 1.59.
 The entropy for cluster k =215 0.00 + 1.00 + 0.00 = 1.00.

https://visualstudiomagazine.com/articles/2013/02/01/data-clustering-using-entropy-minimization.aspx

Red Small Soft
Green Small Soft
Green Large Soft
Red Medium Hard
Orange Medium Hard
Green Medium Hard
Blue Large Hard
Blue Medium Hard


https://visualstudiomagazine.com/articles/2013/02/01/data-clustering-using-entropy-minimization.aspx

Entropy~ EMIAC Algorithm

Small
Small
Large

 Now the overall entropy for the clustering Is the g
weighted sum of the cluster entropies, where the weight °="e

Green

Medium
Medium

Medium

for each cluster is the probability of the cluster, whichis .

just the number of tuples in the cluster divided by the B8

Large

Medium

total number of tuples. So,

 P(cluster 0) = 3/8 =0.375,
* P(cluster 1) = 3/8 =0.375 and
 P(cluster 2) = 2/8 = 0.250.

 Putting the Individual cluster entropies and their
weights together gives the overall EMIAC entropy of
the ClUSte“ng E = (1.84)(0.375) + (1.59)(0.375) + (1.00)(0.250)

= B.688 + 8.595 + 8.258
= 1.533

https://visualstudiomagazine.com/articles/2013/02/01/data-clustering-using-entropy-minimization.aspx
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Normalized Mutual Information
* Normalized Mutual Information:
2 X I(Y; C)

NMIY. C) = oy + HO)

where,

1) Y = class labels

2) C = cluster labels

3) H(.) = Entropy

4) I(Y;C) = Mutual Information b/w Y and C

Note: All logs are base-2.



Normalized Mutual Information

e Assume m=3 classes and k=2 clusters

Cluster-1 (C=1) Cluster-2 (C=2)

A Class-1(v=1) [ Class-2 (v=2) i Class-3 (¥=3)

7/22/2019
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Normalized Mutual Information
H(Y) = Entropy of Class Labels

P(Y=1) = 5/20 = %
P(Y=2) = 5/20 = %
P(Y=3) = 10/20 = %

0=~ 21og () ~og () ~iog(3) = 1.3

This is calculated for the entire dataset and can be
calculated prior to clustering, as it will not change
depending on the clustering output.



Normalized Mutual Information

T
C

H(C) = Entropy of Cluster Labels

P(C=1) = 10/20 = 1/2
P(C=2) = 10/20 = ¥
0=~ iog () ~2og (3) =

his will be calculated every time the clustering
hanges. You can see from the figure that the

C

usters are balanced (have equal number of

instances).



Normalized Mutual Information

I(Y;C)= Mutual Information

 Mutual information is given as:
—I(Y;C) = H(Y) — H(Y|C)
— We already know H(Y)

— H(Y|C) is the entropy of class labels within each
cluster, how do we calculate this??

Mutual Information tells us the reduction in the
entropy of class labels that we get if we know the

cluster labels. (Similar to Information gain in
deicison trees)

7122/2019
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Normalized Mutual Information

H(Y|C): conditional entropy of class
labels for clustering C

* Consider Cluster-1:
— P(Y=1|C=1)=3/10 (three triangles in cluster-1)
— P(Y=2 |C=1)=3/10 (three rectangles in cluster-1)
— P(Y=3|C=1)=4/10 (four stars in cluster-1)
— Calculate conditional entropy as:

H({Y|C=1)=-P(C=1) Z P(Y = y|C = Dlog(P(Y = y|C = 1))
y€{1,2,3}

1 3 3 3 3 4 4
== 2 x [=1log (E) +—log(2)+—log(o)] = 0.7855



Normalized Mutual Information

H(Y|C): conditional entropy of class
labels for clustering C

* Now, consider Cluster-2:
— P(Y=1|C=2)=2/10 (two triangles in cluster-1)
— P(Y=2]C=2)=7/10 (seven rectangles in cluster-1)
— P(Y=3|C=2)=1/10 (one star in cluster-1)
— Calculate conditional entropy as:

HY|C =2)=—-P(C =2) z P(Y = y|C = 2)log(P(Y =y|C =2))
y€{1,2,3}

1 2 2 7 7 1 1
=— 2% [Zlog (E) + Zlog(—)+=—log(-)] = 0.5784



Normalized Mutual Information
1(Y;C)

* Finally the mutual information is:
I(Y;C) = H(Y) — H(Y|C)
= 1.5 —[0.7855 + 0.5784]
= 0.1361

The NMI is therefore,

2% I(Y;C
NMI(Y,C) = ()

[H(Y) + H(C)]

2 x0.1361
NMI(Y,C) = 15+ 1) = 0.1089




Normalized Mutual Information

* NMlI is a good measure for determining the
quality of clustering.

* |tis an external measure because we need the
class labels of the instances to determine the
NMI.

e Since it’s normalized we can measure and
compare the NMI between different
clusterings having different number of

clusters.



Normalized Mutual Information

e Calculate the NMI:

Cluster-1 (C=1) Cluster-2 (C=2)

A Class-1(Y=1) -Class-2 (Y=2) *CIass—B (Y=3)

7/22/2019
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Normalized Mutual Information

H(Y|C): conditional entropy of class
labels for clustering C

e Consider Cluster-1:
— P(Y=1|C=1)=3/10 (three triangles in cluster-1)
— P(Y=2|C=1)=7/10 (seven rectangles in cluster-1)
— P(Y=3|C=1)=0/10 (no stars in cluster-1)
— Calculate conditional entropy as:

H(Y|C =1) = —P(C =1) Z P(Y = y|C = Dlog(P(Y = y|C = 1))
y€(1,2,3}

1 3 3 0 0 7 7
=— 1 x [ 1og (E) +<Hlog(-D)+=log()] = 0.4406

We used 0log(0)=0



Normalized Mutual Information

H(Y|C): conditional entropy of class
labels for clustering C

 Now, consider Cluster-2:
— P(Y=1|C=2)=2/10 (two triangles in cluster-1)
— P(Y=2|C=2)=3/10 (three rectangles in cluster-1)
— P(Y=3|C=2)=5/10 (five stars in cluster-1)
— Calculate conditional entropy as:

HY|C =2)=-P(C =2) Z P(Y =y|C = 2)log(P(Y = y|C =2))
ye{1,2,3}

1 2 2 3 3 5 5
== x [Zlog (=) + = log(=)+=log(-2)] = 0.7427



Normalized Mutual Information

1(Y;C)

* Finally the mutual information is:
I(Y;C) = H(Y) — H(Y|C)
= 1.5 — [0.4406 + 0.7427]
= 0.3167

The NMl is therefore,

2% I(Y;C
NMI(Y,C) = (¥ C)

[H(Y) + H(C)]

2 x0.3167
NMI(Y,C) = 15+ 1] = 0.2533




Normalized Mutual Information

 NMI for the second clustering is higher than
the first clustering. It means we would prefer

the second clustering over the first.
— You can see that one of the clusters in the second
case contains all instances of class-3 (stars).

* If we have to compare two clustering that
have different number of clusters we can still
use NMI.



Rand Index

Rand Index (RI) is based on comparing pairs of elements.

Theory suggests, that similar pairs of elements should be placed in the same
cluster, while dissimilar pairs of elements should be placed in separate clusters.

RI does not care about difference in number of clusters.
It just cares about True/False pairs of elements.
Based on this assumption, RI, is calculated;

RI a+b correct similar pairs + correct dissimilar pairs
- ( n) - total possible pairs

2

https://stats.stackexchange.com/questions/89030/rand-index-calculation/173581



https://stats.stackexchange.com/questions/89030/rand-index-calculation/173581

cluster 1 cluster 2 cluster 3

1| 2| 3

Ln
=
fad

| |
R s
a+b correct similar pairs + correct dissimilar pairs = | |
RI = = s e
| 1] 4]
R s
e | 1]

(n) total possible pairs

o

[
=Y
L]

O 8 1 3

* In denominator, we have total possible pairs, which is (17 2) = 136
* True Positives or correct similar;
c a=052+(12+22)+(12)+(42)+(02)+(02)+(12)+(32)=10+0+1+0+6+0+0+0+3=20

e False Positives or incorrect dissimilar:
e ¢=5*1+5*2+1*2+1*4+1*0+4*0+ 0*1+0*3+1*3=5+10+2+4+0+0+0+0+3=24

 False Negative or incorrect similar;
e d=5*1+5*0+1*0+1*4 + 1*1 + 4*1+2*0+2*3+0*3=5+0+0+4+1+4+0+6+0=20

* True Negatives or correct dissimilar;
e d=5*4+5*0+5*1+5*3+1*1+1*0+ 1*0+1*3 +2*1 + 2*4 + 2*0 + 2*1+ 1*1 + 1*3+ 4*0 + 4*3 =72

« Rand Index=(20 + 72) / 136 = 0.676

https://stats.stackexchange.com/questions/89030/rand-index-calculation/173581
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1| 2

e

i
=

a+b correct similar pairs + correct dissimilar pairs *

| |
e e

ar | 5 1]
Rand I ndex (n) total possible pairs "'i'"'4|'""i"
s

e | 1|

(]
[y
Y

O 8 1

* In denominator, we have total possible pairs, which is (17 2) = 136

* True Positives or correct similar;
ca=(2)+(12)+(22)+ (L +(42)+(02)+(02)+(12)+(32)=10+0+1+0+6+0+
0+0+3=20
e False Positives or incorrect dissimilar:

e C=5*1+5*2+1*2+1*4+1*0+4*0+ 0*1+0*3+1*3=5+10+2+4+0+0+0+0 +
3=24

cluster 1 cluster 2 cluster 3
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Measuring Cluster Validity Via Correlation

« Two matrices
*  Proximity Matrix
e “Incidence” Matrix

* One row and one column for each data point

 Anentryis 1 if the associated pair of points belong to the same cluster
 Anentryis 0 if the associated pair of points belongs to different clusters

« Compute the correlation between the two matrices

«  Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be
calculated.

« High correlation indicates that points that belong to the same cluster are
close to each other.

* Not a good measure for some density or contiguity based clusters.



Measuring Cluster Validity Via Correlation

* Correlation of incidence and proximity matrices for the K-means
clusterings of the following two data sets.

1 1
0.9+ 0.9 e e
[ ] [ ]
0.8+ o 8 08F o ® . .
. "o' “ ®
0.7F o ey 0.7F
® e%
0.6 e . 06~ °
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I oy R
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0.3} e Lk M A" 0.3k v
e * Vv v vy
v
0.2f 027
0.1f 0.1f
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Corr =-0.9235 Corr =-0.5810



Using Similarity Matrix for Cluster Validation

 Order the similarity matrix with respect to cluster labels and

Inspect visually.
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Using Similarity Matrix for Cluster Validation

* Clusters in random data are not so crisp

7/22/2019
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Using Similarity Matrix for Cluster Validation

« Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

* Clusters in random data are not so crisp

Points

Points

Complete Link

7/22/2019
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Internal Measures: SSE

 Clusters in more complicated figures are not well separated

* Internal Index: Used to measure the goodness of a clustering structure
without respect to external information

« Sum of Squared Error

« SSE is good for comparing two clusterings or two clusters (average SSE).
 Can also be used to estimate the number of clusters
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Internal Measures: SSE

« SSE curve for a more complicated data set
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Internal Measures: Cohesion and Separation

 Cluster Cohesion: Measures how closely related are objects in a cluster
* Cluster Separation: Measure how distinct or well-separated a cluster is from other
clusters

« Example: Squared Error
« Cohesion is measured by the within cluster sum of squares (SSE)

WSS =3 ¥(x-m;)?

I xeC.
» Separation is measured by the between cluster sum of squares

BSS = Z\Ci (m—m,)*

Where |C;| is the size of cluster i



Internal Measures: Cohesion and Separation

* Example: SSE
* BSS + WSS = constant

m
o ¢ % SRS
1 m, 2 3 4 m, 5
K=1 cluster: WSS=(1-3)* +(2-3)* +(4—3)° +(5-3)° =10

BSS=4x(3-3)°=0
Total =10+0=10

K=2 clusters: WSS= (1-1.5)°+(2-1.5)°+(4-4.5)° +(5-4.5)° =1
BSS=2x(3-1.5)°+2x(4.5-3)°=9
Total =1+9=10



Internal Measures: Silhouette Coefficient

Silhouette Coefficient combine ideas of both cohesion and separation, but for individual
points, as well as clusters and clusterings
 For an individual point, I
 Calculate a = average distance of I to the points in its cluster
Calculate b = min (average distance of i to points in another cluster)
The silhouette coefficient for a point is then given by

s=1-alb ifa<b, (ors=b/a-1 ifa>Db,notthe usual case)

Typically between 0 and 1.
The closer to 1 the better.

» Can calculate the Average Silhouette width for a cluster or a clustering
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Silhouette Coefficient Example

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

The silhouette plot for the various clusters.

The visualization of the clustered data.
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Silhouette Coefficient Example

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Silhouette Coefficient Example

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Silhouette Coefficient Example

Silhouette analysis for KMeans clustering on sample data with n_clusters =5

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Silhouette Coefficient Example

Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

The silhouette plot for the various clusters.

The visualization of the clustered data.

7.5 4
5.0 @ ...
2.5 = o ’
¢ .
£
=T 001
g $ s i nr SN
E g EREIIRE S e i
5 8 RO * TNy
z " 'CI:) t:‘: ’ - -‘ -.'. '- |:-
5 -5.0- RREL A .
s "® Pl
e, Beilavye
i @
-10.0 ’ o
01 00 02 04 06 0.8 1.0 _12 _10 8 6 4 ) 0
The silhouette coefficient values Feature space for the 1st feature
7/22/2019 https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette analysis.html

53


https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Silhouette Coefficient Example

For
For
For
For
For
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n_clusters
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:IE.ESESIEEEEE?1943?
: 9.5637640980201594
: 8.4504666294372765

54


https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Internal Measures: Gap statistic

» The gap statistic compares the total within intra-cluster variation for different values of k with

their expected values under null reference distribution of the data.

largest gap statistic).

The estimate of the optimal clusters will be value that maximize the gap statistic (i.e, that yields the

» This means that the clustering structure is far away from the random uniform distribution of points.

1. Cluster the observed data, varying the number of clusters from k = 1. .... kg and compute the corresponding

total within intra-cluster variation W,

2. Generate B reference data sets with a random uniform distribution. Cluster each of these reference data sets

with varying number of clusters k =1, ..., kmax and compute the corresponding total within intra-cluster variation
3. Compute the estimated gap statistic as the deviation of the observed W, value from its expected value Wy, under

B
the null hypothesis: Gap(k) ﬁ > log(W}}) — log(W3). Compute also the standard deviation of the

i,
b=1
statistics

4. Choose the number of clusters as the smallest value of k such that the gap statistic is within one standard

deviation of the gap at k+1: Gap{k)=Gap(k + 1}-5x . 1.

7/22/2019 https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/#gap-statistic-method
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How to decide best cluster number?

Optimal number of clusters Optimal number of clusters
Elbow method Silhouette method
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Number of clusters k MNumber of clusters k
Optimal number of cluster: ¥ = Elbow method: 4 clusters solution suggested
Gap statistic method
: = Silhouette method: 2 clusters solution suggested
- 0.30 ' = Gap statistic method: 4 clusters solution suggested
Iy I [N
2 0.25- -
=
" According to these observations, it's possible to define k = 4 as the optimal number of clusters in the data.
= 0.201
O
0.15
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Number of clusters k
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Final Comment on Cluster Validity

“The validation of clustering structures 1s the most difficult and frustrating
part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black
art accessible only to those true believers who have experience and great

courage.”

Algorithms for Clustering Data, Jain and Dubes



