Diferansiyel Kalkulus’un muciti Leibniz i sayisini, olmak ile olmamak arasinda, diye tarif etmis. Her iterasyonda asagidaki basit eslesme uygulanir \[ z = z^2 + c \] Burada hem z hem c birer karmasik sayidir. iki boyutlu duzlemdeki her z noktasinin karesi alinir, sonra c eklenir.Daha sonra elde edilen yeni z’lerin tekrar karesi alinip c eklenir, bu boyle surer gider.. Bu tekrarli islemin sonunda bazi noktalar, sonsuza gider bazilari ise sonlu buyuklukte kalir.

###########################################################
# Tekrar eden esleme: z  = z^2 + c
tekrarla <-function(z, c = c(-0.7,-0.2), tekrarSayisi = 60){
  n = 0; buyukluk = 0
  xt= z[1]; yt= z[2] # tekrar eden x ve y
  while(n<tekrarSayisi & buyukluk<1000)
  {
    yeni.x=xt^2-yt^2+c[1]
    yeni.y=2*xt*yt+c[2]
    
    buyukluk=yeni.x^2+yeni.y^2
    xt=yeni.x;yt=yeni.y
    n=n+1
  }
  sonsuz = T;  if (buyukluk<1000) sonsuz = F
  return(sonsuz)
}
###########################################################

Fraktaller - Julia Kumesi

Asagida sonlu buyuklukte kalanlari, siyah renkle boyadik. Bakin ne ortaya cikti.. Mandelbrot Fraktaller icin, bulutlarin dili derken, sizce de hakli miydi?

xLim=c(-2,2); yLim=c(-2,2)
adim = 0.01
z.x=seq(xLim[1],xLim[2],by=adim)
z.y=seq(yLim[1],yLim[2],by=adim)
plot(0,0,xlim=xLim,ylim=yLim,col="white", main = "Fraktaller - Bulutlarin Geometrisi")
for(x in z.x){
  for(y in z.y){
    sonsuz = tekrarla(z = c(x,y), c = c(-0.7,-0.15), tekrarSayisi = 60)
    if( sonsuz == F) points(x,y,col ="black", pch = 20, cex = 1)
  }
}

LS0tCnRpdGxlOiAiRnJha3RhbGxlciAtIEp1bGlhIEt1bWVzaSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKRGlmZXJhbnNpeWVsIEthbGt1bHVzJ3VuIG11Y2l0aSBMZWlibml6IGkgc2F5aXNpbmksIG9sbWFrIGlsZSBvbG1hbWFrIGFyYXNpbmRhLCBkaXllIHRhcmlmIGV0bWlzLiBIZXIgaXRlcmFzeW9uZGEgYXNhZ2lkYWtpIGJhc2l0IGVzbGVzbWUgdXlndWxhbmlyCiQkCnogID0gel4yICsgYwokJApCdXJhZGEgaGVtIHogaGVtIGMgYmlyZXIga2FybWFzaWsgc2F5aWRpci4gaWtpIGJveXV0bHUgZHV6bGVtZGVraSBoZXIgeiBub2t0YXNpbmluIGthcmVzaSBhbGluaXIsIHNvbnJhIGMgZWtsZW5pci5EYWhhIHNvbnJhIGVsZGUgZWRpbGVuIHllbmkgeidsZXJpbiB0ZWtyYXIga2FyZXNpIGFsaW5pcCBjIGVrbGVuaXIsIGJ1IGJveWxlIHN1cmVyIGdpZGVyLi4gQnUgdGVrcmFybGkgaXNsZW1pbiBzb251bmRhIGJhemkgbm9rdGFsYXIsIHNvbnN1emEgZ2lkZXIgYmF6aWxhcmkgaXNlIHNvbmx1IGJ1eXVrbHVrdGUga2FsaXIuCgpgYGB7cn0KIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMKIyBUZWtyYXIgZWRlbiBlc2xlbWU6IHogID0gel4yICsgYwp0ZWtyYXJsYSA8LWZ1bmN0aW9uKHosIGMgPSBjKC0wLjcsLTAuMiksIHRla3JhclNheWlzaSA9IDYwKXsKICBuID0gMDsgYnV5dWtsdWsgPSAwCiAgeHQ9IHpbMV07IHl0PSB6WzJdICMgdGVrcmFyIGVkZW4geCB2ZSB5CiAgd2hpbGUobjx0ZWtyYXJTYXlpc2kgJiBidXl1a2x1azwxMDAwKQogIHsKICAgIHllbmkueD14dF4yLXl0XjIrY1sxXQogICAgeWVuaS55PTIqeHQqeXQrY1syXQogICAgCiAgICBidXl1a2x1az15ZW5pLnheMit5ZW5pLnleMgogICAgeHQ9eWVuaS54O3l0PXllbmkueQogICAgbj1uKzEKICB9CiAgc29uc3V6ID0gVDsgIGlmIChidXl1a2x1azwxMDAwKSBzb25zdXogPSBGCiAgcmV0dXJuKHNvbnN1eikKfQojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIwoKYGBgCgojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIwojIEZyYWt0YWxsZXIgLSBKdWxpYSBLdW1lc2kKIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMKCgpBc2FnaWRhIHNvbmx1IGJ1eXVrbHVrdGUga2FsYW5sYXJpLCBzaXlhaCByZW5rbGUgYm95YWRpay4gQmFraW4gbmUgb3J0YXlhIGNpa3RpLi4gTWFuZGVsYnJvdCBGcmFrdGFsbGVyIGljaW4sIGJ1bHV0bGFyaW4gZGlsaSBkZXJrZW4sIHNpemNlIGRlIGhha2xpIG1peWRpPwoKCmBgYHtyfQp4TGltPWMoLTIsMik7IHlMaW09YygtMiwyKQphZGltID0gMC4wMQp6Lng9c2VxKHhMaW1bMV0seExpbVsyXSxieT1hZGltKQp6Lnk9c2VxKHlMaW1bMV0seUxpbVsyXSxieT1hZGltKQoKcGxvdCgwLDAseGxpbT14TGltLHlsaW09eUxpbSxjb2w9IndoaXRlIiwgbWFpbiA9ICJGcmFrdGFsbGVyIC0gQnVsdXRsYXJpbiBHZW9tZXRyaXNpIikKCmZvcih4IGluIHoueCl7CiAgZm9yKHkgaW4gei55KXsKICAgIHNvbnN1eiA9IHRla3JhcmxhKHogPSBjKHgseSksIGMgPSBjKC0wLjcsLTAuMTUpLCB0ZWtyYXJTYXlpc2kgPSA2MCkKICAgIGlmKCBzb25zdXogPT0gRikgcG9pbnRzKHgseSxjb2wgPSJibGFjayIsIHBjaCA9IDIwLCBjZXggPSAxKQogIH0KfQoKYGBgCgoKCgo=